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Chapter 1

INTRODUCTION

The properties of metal-oxide-semiconductor (MOS) field

effect transistors, namely, high circuit packing density, low

power dissipation, simplified processing, and therefore, low

cost, have made Very Large Scale Integration (VLSI) a reality.

The integrated circuit in which thousands of transistors may

be fabricated in a single monolithic chip has added a new di-

mension to electronic circuit analysis. In addition, the

complexity and long term reliability requirements of VLSI

chips, such as RAM's, require their design to be very nearly

optimum in relation to both circuit and device processing.

Also the designs of custom logic array demand a high degree

of accuracy. One reliable method of achieving the above de-

sign goal is through the use of circuit simulation programs.

The correct correlation between the computer simulated re-

sults and experimental measurements, however, depends primar-

*2 ily on two important factors. The first is the accuracy of

the computational method used in the simulation; the second

is the accuracy of the modeling technique used in character-

• .izing the devices in the circuit.

As the number of transistors in the circuit increases,

simulation which can accurately predict circuit performance

becomes very expensive. The two major limitations are the

computer storage capabilities and computer time requirements.

*. Therefore, the determination of the solutions in circuit

" -'++-'- -... .. ... .. ..." " "- "_2o ;--" .2, . -.. .. .. '.*-+..+.--" *+ ' .-.. '-." ." .+. . -.-" ..' .-. ', . , .- '.- ... '+.." ." ' "•
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analysis is important not only from a circuit-theoretic point

of view but even more so from a computational point of view.

This research is concerned with the development of a piece-

wise-linear model and some waveform approximation techniques

for fast and relatively accurate time-domain simulation of

MOS LSI circuits. The results are found to be comparable in

accuracy to those obtained by SPICE2 [i, which in fact will

be used for comparison purposes.

The iterative piecewise-linear (PWL) method [21 is used

for analysis and modeling of the MOS devices. The basic

philosophy of the iterative PWL method consists of treating

a nonlinear network as if it was a number of distinct lin-

ear networks having identical network topology. Each linear

network can then be analyzed independently by simple linear

techniques. This is possible because by assumption the i-v

curves of all nonlinear elements can be realized by PWL seg-

ments. Based on this philosophy, a PWL model for the MOS

device, which consists of an interconnection of two-terminal

elements [3],is constructed and studied.

As a result, the model as presented here is in a form

most suitable for easy table lookup technique. The advantage

of generating tables of device characteristics prior to the

analysis is to replace the expensive analytic function eval-

uations with simple table lookups. Although these tables may

occupy more memory space than the analytic functions, this

penalty can be justified in terms of the speedup in computa-

tion.
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The technique of PWL function generation involves ap-

proximating the i-v curve of the model's two-terminal ele-

ments with continuous straight-lines segments. It is easy to

see that, by increasing the number of segments, a PWL function

can represent the actual curve to a high degree of accuracy.

However, more segments will be penalized on more memory space

for more table entries and longer computation time for more

breakpoint detection (41. For practical purposes, it has

been found that a three-segment PWL approximation gives

acceptable accuracy in digital circuit simulation. Since

there is no general method to find the best approximation of

the i-v curves by segments, the input-output characteristics

of an inverter will be used to investigate the accuracy. The

Katzenelson technique [5, 6] will be employed for obtaining

the DC operating points. The transient behavior of the in-

verter is studied for model validation. A multiple-input

NAND gate is used to study the effects of a floating node

caused by stacking up transistors. Initially, a step input

waveform is applied during the analysis to study the effects

of the MOS model parameters on the accuracy of the results.

It is well-known that the step response of a linear first-

order RC circuit is exponential with the time constant equal

to RC (7] . This simple observation is the key to the devel-

opment of simulation techniques developed in this thesis.

In practice, the constant step input is not very realistic.

In most cases, the signals are not step functions, which, as

will become obvious later, tend to slow down the simulation

....-.--...-.-.-..-.~- . . . . . . . .

* . . . * *0. ..
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method proposed in this thesis. For this reason, two methods

are used to approximate general waveform functions: discrete

stepwise approximation and PWAL continuous (ramp) approxima-

tion. A Gauss-Seidel Waveform Relaxation (TIR) method £7] will
be used to decouple the circuit equations into a sequence of

first-order piecewise-linear differential equations.

Chapter 2 describes briefly the PWL transistor model and

its features for table lookups. Chapter 3 discusses the func-

tion generation by PWL approximation. Chapter 4 examines the

transient behavior of the model and presents simple solutions

of the step response in normal form. Chapter 5 illustrates

the results with simple stepwise waveform representation and

suggests an alternative approach to represent the waveform

which could lead to variable step size approach. In the

final chapter, conclusions are presented and areas for future

work are suggested.
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Chapter 2

DEVICE MODELING FOR MOS

2.1 Introduction

In circuit simulation, a simple MOS model capable of

producing accurate solutions at high computational speed is

very desirable. Hence, the device physics level modeling

is impractical for the application in VLSI circuits, even

though in principle the resulting circuit model would be ex- ..-

tremely realistic. Although no general theory of device

modeling is presently available, the transistor DC character-

istics are usually represented by nonlinear polynomial (quad-

ratic) functions (8]. This representation will be referred

to as the "functional" model. In this thesis, the character-

istics will be approximated by a PWL continuous function.

This approximation will be referred to as the PWL model.

In Section 2.2, the "functional" model is presented which

will form the basis for the development of the PWL model. In

Section 2.3, the relationships between the configuration of

the model and table lookups are discussed. In Section 2.4,

the elements of the PWL model are shown.

2.2 Functional Model

Without loss of generality, the NMOS transistor will be

used for illustrative purposes throughout this thesis. The

basic Sah model £8] is adopted as the functional model which
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gives analytical expressions for the NMOS. This simplifed

version of Sah's model has been derived from a circuit de-

sign standpoint, considering the device parameters which . -

are important in the design of MOS integrated circuits. As

a practical matter of VLSI circuit simulation, normal values

and statistical variations of the threshold voltages, body-

effect coefficient, and temperature sensitivity are not in-

cluded. The special geometrical feature of a short-channel

levice usually requires a separate model from the long-channel

device; this model does not include the short-channel effect.

The device symbol which represents an n-channel enhancement

type transistor is shown in Fig. 2.1.

The mathematical equations for the channel current in

the triode (non-saturation) and saturation regions are given

as follows:

Nonsaturation Region:

ID= K 2(VGs-V T )VD S -VD S 21 VDS VGs-V T  (2-1)

Saturation Region: -

IDS K(V OV2 -V -V < V (2-2)
ID= GS T G S ST-DS

..........
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Drain

VGD D

Gate Bulk VDS

VGS

Source

Fig. 2.1. Device symbol for NMCS transistor.

2 f(VGD

Fig. 2.2. Two-current source MOS model.

.~7 Z. ..
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The constant K is given by

ULox w
K= 2- L (2-3)

ox

where u = average surface mobility of carriers in channel -

(electrons in n-channel) devices

eox = permittivity of the oxide insulting layer

t = thickness of oxide under gate

L = length of channel

W width of channel

The VGS, VDS, and VT are gate to source voltage, drain to

source voltage, and threshold voltage, respectively. Two para-

meters are defined as KP and k for convenience. The trans-

conductance parameter KP is defined as

1Lox
KP = (2-4)

ox

The width-to-length ratio of channel, k, is given by

k W (2-5)

If the table lookup method was used to solve the given

mathematical equations, a straightforward approach would

require a 2-dimensional table, T, to obtain the channel cur-

rent.

VGSE  VGS -V T  (2-6a)

IDS(VGS,VDs) Td(VGSE,VDS) (2-6b)

However, the number of entries for the 2-dimensional table

................................
m
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may offset the advantage of evaluation time. One-dimensional

tables which reduce both memory requirements and model evalu-

ation time are proposed in the next section.

2.3 Equivalent Circuit Model w.th 2-Terminal Elements

As shown later, 1-dimensional tables achieve considerable

memory savings as compared to 2-dimensional tables. One ap-

proach is to use two 1-dimensional tables [9' in the follow-

ing form:

IDS (VGSVGD) = Te(VGS) + Tf(VGD) (2-7)

The above form is feasible by noting that the nonlinear

relationships between channel current and the terminal volt-

ages can be written as the difference between two nonlinear

current components, each of which is dependent on only one

pair of terminal voltages [10].

IDS = 1 - 12 (2-8)

where I= K * f(VG,VS)

12 = K * f(VG,VD)

The form with two current components is easily generated by

* substituting VDS with VGs-VGD into Eq. (2-1). The final

form is given by [10].

IDS = K(VGs-VT)2  - K(VGDVT) 2  (2-9)

Thus, f(VG,Vx) has the following conditions:
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f(VG,Vx) = [(VG-VT) - Vx] for VG-VT > V (2-10a)

=0 for VG-VT < Vx (2-10b)

The configuration of two current sources is illustrated by

the model of Fig. 2.2. ,

Proceeding one step further, an approach dealing with

interconnections of 2-terminal circuit elements yields the

Ebers-Moll "like" model of Fig. 2.3. Both forward and reverse

a's must equal unity in order for the gate current Ig = 0, as

it must be for an MOS transistor. The i-v characteristics of

the diode element are as described by Eq. (2-8) and Eq. (2-10).

The given conditions of f(VG,VX) enable Eq. (2-8) to represent

the channel current in both regions with 12 = 0 in the

saturation region and exhibit the familiar quadratic character-

istics. The completely bidirectional feature of the model

also reduces the two 1-dimensional tables to one.

2.4 Elements of PWL Model

A one-dimensional PWL function can be represented math-

ematically by

y = m x + k. a. < x < b. = 1,2,... (2-11)3 3 3 -- 3

The linear function defined in each interval of Eq. (2-11)

will be called segment, and the endpoints of each segment

will be called breakpoints. A set of four parameters (m, k.,

a.,b.) is required to describe each segment. After the setup

of the PWL segments, an equivalent circuit consisting of linear

• --. . .. .... ,.- .. '.. '-.. . ....'. . , . . . ... - - , , . . .-. . . . .,.' ' , , . -- .. . .
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Fig. 2.3. Ebers-Moll "like" MOS model.

i 9

Fig. 2.4. Norton equivalent circuit for PWL
segment.
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elements and independent sources could be used to represent

the curves in a given region.

The i-v curve characterized by Eq. (2-10) will be approx-

imated by PWL segments. Let gj be the slope of segment j

in the PWL representation. Let segment j or its extension

intersect the i-axis at Ij. Let segment j be defined for all

a. < v < b.. Within the prescribed intervals for segment j,

the characteristics can be replaced by the Norton equivalent

circuit of Fig. 2.4. The conductance is used to realize the

slope of the segment and the independent current source is

used to represent the i-axis intercept. In order to keep the

gate current Ig = 0, as it must be for MOS, two linear control-

led current sources are added to implement this physical

property. As a result, a PWL model is constructed as shown

in Fig. 2.5. It is also noted that the completely bidirec-

tional feature of the MOS devices gives the identical i-v

characteristics for the two nonlinear resistors. Hence, the

parameters needed to describe the segments are tabulated only

once.

•*.. ..
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D

t d d I

GQ

I s12

S

=S

I2 =

Fig. 2.5. Piecewise-linear model for MOS. 5
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Chapter 3

PIECEWISE-LINEAR FUNCTION GENERATION

C.

3.1 Introduction

The linear function defined In Eq. (2-11) formulates

many segments and breakpoints. It is easy to see that, by

increasing the number of segments, a piecewise-linear function

can represent the actual function to a high degree of accura-

cy. However, four parameters are required to describe each

segment. More segments will require more memory space for• B-°

more table entries and also longer computational time for

more breakpoint detection. For digital circuit applications,

we found that a three-segment PWL representation with appro-

priately chosen breakpoints gives acceptable solutions when

compared to SPICE2.

Without any loss of generality, the standard depletion-

load inverter will be used for accuracy measurement. The

device symbol for the inverter is shown in Fig. 3.1. The

following parameters of the inverter will be used throughout

this thesis. Let k and kL be width-to-length ratios of the
D L

channel for the driver and the load, respectively. Let VTD

and VTL be the threshold voltage for the driver and the load,

respectively. The transconductance parameter KP is set to

2the default value of SPICE2 at 20 AA/V2 . Typical values of

1 V and -2 V are used for the threshold voltages of the en-

hancement and depletion transistors, respectively. The power

supply V is 5 V. Base on the minimum gate area criterion

....lu.-s°..-.....-....... ....-..- '...... ......
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Vplus

LOAD

DRIVERV

V.i n

Fig. 3.1. Depletion-load inverter.
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and an arbitrary value of 0.2 V for solid logic "0", kD and
k have values of 1.60 and 0.625, respectively. The PWL
L

model for the inverter is shown in Fig. 3.2.

3.2 Approximation by Chord

One straightforward approach to generate a piecewise-

linear function is to connect a set of sampling points with

straight line segments [4]. The i-v curves of the nonlinear

resistors with 3-segment approximation are shown in Fig. 3.3.

After the setup of the segments, the four parameters (mj,kj,

a.,b.) are tabulated in Tables 3.1(a,b).

In order to measure the accuracy of the segment approxi-

mation, the Katzenelson techniques will be used to find the 'A

DC operating points of the inverter. Results from the analyt-

ical method on the functional model will be used for compari-

son. Analysis of the functional model gives the switching

point where input Vin is equal to output Vout at 2.25 V. In

other words, Vout is expected to have a high value when V.
out in

is less than 2.25 V and vice versa.

The active range (-2 V to 0) of the depletion transistor

is relatively short. Hence, two segments with equal inter-

vals provide a good approximation. More attention was placed

on the selection of the breakpoint Vz on the longer active

range (1 V to 5 V) of the enhancement driver. Selecting the

wrong Vz will result in unrealistic solutions. This problem

can be demonstrated by considering the case where V. ' 2.25 V
in

and Vz > 2.25 V. The expression of output Vou t at the output

out• i'
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Vgdl

L dl Ll

Vgsl isl gsl I

L 2

Vgdd idd gdd I

!.0 Vout

V. Vgsd isd sd I
in D2

Fig. 3.2. PWL model for the inverter.
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Table 3. la

Parameters of the Driver Transistor's i-v
Curve by Chord Approximation

k kmhs ik (A) ak(V) b k(V)

1 0 0 -5 VT

2 K D(Vz-V TD) -K D(Vz-.VTD)VTD V TD z

3 K D(Vplus +V Z-2V T) K D(VTD 2-Vplls*T v ) V z V pu

Table 3.1b

Parameters of The Load Transistor's
i-v Curve by Chord Approximation

k mk(mhos) k(A) ak(V) bk(V)

I0 0 -5 V T

2 -0.5K *V 0.5K *V 2 V 0.5VL TL L TL TL TL

3 -1.5K*V K *V 20.5VT 0L TL L TL T
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terminal is given by

I I +idd-idl+Vi *gdd+v *gdl (3-1)
Vout LI DI in plus(31

gdd+gdl

ILI = Vgsl*gsl+isl (3-2a)

IDI = Vgsd*gsd+isd (3-2b)

In the Katzenelson algorithm, gsd and isd are kept constant

by the constant input, while gsl and isl are fixed by the zero

gate-to-source potential at the load. However, gdl and gdd

will vary across regions during the iterative process. Let

V out (0) be the initial guess of the output. Let gj(k) and

(k) ti. correspond to the parameters of segment j at the kth

iteration. Let V (1) be the first iterated solution. A
nou t

solid logic 0 of 0.2 V has been preset as the initial guess

at the output terminal regardless of the input.

(1)Because of the initial guess, the gddk( always start

in the same region as gsd k  regardless of the input. The

equality of these two resistors eliminates the terms that

are associated with gdd, gsd, idd, and isd from Eq. (3-1).

The initial guess also puts gdl and idl always in region 1

with zero values. For V.n < 2.25 V, the output Vou t will

vary across at least one breakpoint from the initial guess

to the final value. The next breakpoint for gdl and gdd with

the rising Vout is at V pu+V (3 V)and V in-V TD(:1.25 V)

respectively. Obviously, gdd will switch regions before gdl

(1)
does. In this case, the small values of idll and gdl

can be neglected from Eq. (3-1). The Vo(1) is simplified
out
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in the following expression.

Vou( I ) isl 3ou (3-3) -

gdd k -

In the case where Vin < VTD, gddk (1) is in region 1

with the zero value. Since isl 3 does not have a zero value,

gdd 1 ) being zero puts Vout across the adjacent region.

In the case where 2.25 V > Vin > VTD' gddk(1) is in

region 2. From Table 3.1, Eq. (3-3) is given by

Vout ( 1) k L ( V T)2 2 ."
o L TL 1.5625 V (3-4)

k D (Vz -V TD ) Vz- 1 V

The condition for V ut(1) to be able to travel to the next

breakpoint is being larger than V. -VT(< 1.25 V). Otherwise,in TD(V) Oter

VOut (I) will remain in the same region as Vout ( and itera-

tion will be terminated with an incorrect solution. The

above condition defines the requirement for V as follows:

kL (-V TL)2
kL 2

V < D 1.5626 V + 1 V (3-5)
-in-V TD = in-1 V

After V satisfied the requirement, the accuracy of the. z.

DC operating point will be evaluated for Vi < 2.25 V. At

the operating point, Vou t should have a value larger than

2.25 V. The final value of Vou t puts gdd and idd in region

1. The expression for V (final) is given by
out
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+dl (final)
(fdinal) *cVp lu+(is6

n TD

You t  plus.-

gdl (final)gdk

(f inal) (final)
In the case where Vin VTD, gsdj becomes gsdl

(final)cabeng :'"
which means the term associated with gsd. can be neg-

J

lected in Eq. (3-6). It is also reasonable to say idlk(final)

is in region 3 because of the small input. The resulting ex-
(final) i reo -'

pression for Vout is free of V

Vout  =

Vout (final) Vplus = 5 V(3

In the case where gsd. (final) in region 2 (2.25 V -- Vin>
S(final)

VTD), gdl k (final) and idlk(final) are in region 3 (Vout (n)

(final)isotie. :

_ 4 V), the following expression for a is obtained.out

(final) = V*D z-VTD)(Vi -VT 'Vout plus - in TD

kL* (VTL)

2.56
3 .(Vz_ 1 V) (3-8).

In the case where gsdj (final) is in region 2, gdl (final)
Jk

(final) (final)
and idlk are in region 2 (3 V 4_ Vout . 4.0 V),

the following expression for Vout is obtained.

2*k D (V z-VTD)*(Vin-VTD) (39)
v(fnal) = V (3-9)out plus kL TL TL

= 7 V - 2.56*(V-1 V)

..... ' . - . . . . . . . . . . . . .. . : . . : . . . - - -I , '." " "''- ', '.' .'' ".' .''''''. '.' - "''. '. "-' , " "-'''-. -..,'- -'- ,' ',' ',' Y~j -' '. ,,. .', .-' ' ' ,.," - : 7" 71"
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Equation (3-8) and Eq. (3-9) indicate V (final) is depen-
out

dent on the breakpoint Vz  Table 3.2 illustrates the result

of VOUt by Katzenelson's algorithm with various values of Vz.

It is easy to visualize the accuracy in degrading as Vz is

placed farther and farther from the input.

On the segment approximation, the breakpoints give the

exact value on the curve. The error is increasing away from

the breakpoints to the mid-point of each segment. For the

quadratic function

9 = (x - V 2

it is possible to verify that the maximum errors occur at the

midpoint of each segment as follows.

Let y be defined as Eq. (2-11) with (mj,kj,aj,b).

At x = a. y = Ya = (aj-VT) 2 (3-11a)2

At x = bj y = Yb = (bj-VT) (3-11b)

. -b-a (a.+b.) - 2V. (3-11c)

3 3

Let error e be

e = y y

(3-12a)
2 '

= (x-VT 2 - (mjx+k.)T

de =(-
T-X = 2(x-V T )  m (3-13)

Setting de/dx to zero gives

Mn.
x =2 + VT (3-14a)

*. . . . . . . . .. . .2

S*- *S * * . . . . . . .



25

Table 3.2

Inverter DC Output With "Chord" Approximation

V~~(V)) v~(final)(v

2.0 1.56 4.15

2.1 1.42 4.06

2.2 1.30 3.93

2.3 1.20 3.67

2.4 1.12 3.42

2.5 1.04 3.16

2.5625 1.00 3.00

2.6 0.927 0.927

2.7 0.919 0.919

2.8 0.868 0.868

2.9 0.822 0.822

3.0 0.781 0.781

V. 2.0OV
in

v ~(final) =4.2 V by "functional" model

**It is necessary for V 01 V i. -V TDfor the trajectory to

cross into other regions.
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From Eq. (3-i1c),

a .+b
ajb (3-14b)X "2

,".

The maximum error at segment 2 is as high as 100% regard-

less of how many segments are used. The higher values of V.

in Table 3.2 have the effect of putting Vin (2 V) closer to

maximum error point. Therefore, the selection of Vz is con-

sidered as crucial in the approximation method by the chord.

3.3 Approximation by Tangent

An alternative way of approximating functions by PWL seg-

ments is to use tangent rather than the chord. The i-v curve

of a nonlinear resistor is shown in Fig. 3.4 with the new 3-

segment representation. The procedure for choosing the PWL

segments is as follows. First, the voltage axis is divided

up into intervals. Instead of connecting the endpoints of

these intervals to form the slope of segments, the slope is

taken as the slope of the tangent at these points. The slope

at each end point is represented by its tangent line which

defines a particular segment for the new intervals. Then the

intersections of these tangent lines define a new set of

breakpoints. Again, the necessary parameters for the segments

are tabulated. The relationships among the tangent points and

the breakpoints will be analyzed.

Let VaVb, and Vc be the chosen tangent points as shown

in Fig. 3.4. For
2 V 3- 5

i = K(VGx-VT) VT < VGX end (3-15)

........................- -.... -
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V
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___ __
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V 2

V Vb

10t 20 30 40 so
VGX

A = PVWL segments

B = Actual i-v curve

Fig. 3.4 PWJ approximation by tangent.
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the slope of the tangent line at V is
u

di = 2 K(V-VT) (3-16)
dVGx

V u .

The slopesof the tangent line at VaVbP and V are shown in

column 2 of Table 3.3. A zero value of conductance is used

to represent the horizontal tangent line at Va* The current

intercept of the segment containing tangent point V is

k. = K(V 2-V2 (3-17)ST u

The relationships among the breakpoints and tangents are ob-

tained as follows. Let segment j contain the tangent point Va ,

and segment j+l contain the tangent point Vb . The intersection

of these two tangent lines gives the new breakpoint.

m.x + kj m x + k (3-18)

where mj,mj+lpk and kj+ 1 are defined as Eq. (3-16) and Eq.

(3-17). Solving Eq. (3-18) gives the following

k.j -kj+l

3+ -MS -- nmj+l j"-

k[(VT2 -Va2 )-(VT 2 -Vb2)]
2 k[( Vb-VT)-(Va-VT)]

V +Vb  '.

-Vb (3-19)

The breakpoints in terms of tangent points are given by the

following:

...................... .......
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= VT+Vb (3-2'a.

V - 2 (3-20a)

+-~~~ V+V c  7-
V2 ( 3-20b )"--

V3 = Vend (3-20c)

It is noted that the maximum error occurs at the breakpoints

as shown in Fig. 3.4 and their relationships to the tangent

points are as follows:

e1 =' -(Vb-2 T (3-21a) .

K 2

e= (Vc-Vb) (3-21b)

e = K (Vend-Vc)2  (3-21c)

If the maximum error is too big,then additional tangent lines

*i can be added at the breakpoint where the maximum error occurs

to reduce the error.

The input-output characteristics of the inverter will be

used again to investigate the accuracy of the approximation.

The selection of the tangent point V is necessary to be V <a a-

." VT; otherwise, more than three segments will be established.

The selection of the tangent point V is very critical because
b

the breakpoint V1 or the effective threshold voltage is deter-

." mined by its value. Although the maximum error el is also

determined by V the effect on the DC operation is not sig-

nificant. However, any discrepancy of the threshold voltage

in timing analysis will contribute to major errors. Hence, it

. ..

L : ;--",€ "-" -'- -" +" .'."" .:", ."- ."--. ."". "". '. ". "--" --
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is desired to put Vb as close as possible to VT without causing

an unacceptable trade-off in the maximum error e2 . Vc is

selected as a compromise to reduce both e2 and e3 . The above

criterion of selecting tangent points is applicable to both

the enhancement and depletion transistors. The associated

parameters are entered in Table 3.3 in terms of the tangent

points.

Table 3.3

Associated Parameters for The Segments by "Tangent" Approxi-
mation

k mk(mhos) ik(A) ak(V) bk(V)

1 0 0 -Vplus 0. 5 (VT+Vb)

2 2 K(Vb-VT) K(V 2 ) 0. 5 (VT+Vb) 0. 5 (V+Vb)

3 2K(V c -V ) K(VT2-V 2 ) 0.5(V +) V
T T c Vb end

Accuracy measurements areemphasized on the approximation of the

driver because of its longer active region. An arbitrary set

of tangent points based on the above criterion is selected

for the depletion load. Results of various sets of tangent

points with input V. set at maximum error points are compared
i n

with the result by the "functional" model in Table 3.4. This

method of segment approximation provides accurate DC analysis

and resolves the major problems of the chord approximation

method.
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Chapter 4

MODEL VALIDATION

4.1 Introduction

Although acceptable DC results are achieved in the inver-

ter circuit, more detailed study is needed to understand the

effect of the PWL approximation on the accuracy of the

transient response. For an understanding of the transient

behavior of the network model, the circuit shown in Fig. 4.1

will be analyzed. In addition, the PWL model will be used to

construct a multiple-input gate. The 2-input NAND gate shown

in Fig. 4.2 is chosen to study the effect of the floating

node as a consequence of stacking MOS transistors 'l11. 1

To simplify the analysis, the following assumptions will

be used throughout the thesis:

Assumption: All output capacitances are combined into

a simple equivalent load capacitance (CL). This sim-

plification allows an analytical solution to be devel-

oped which is adequate for most MOS transient design

problems.

Initially, the voltage input to the inverter will be a

step function for both the turn-off and turn-on cases. The

first case is assumed to have a value V. = 0.2 V, and the
in

second case to have a value of V. = 5 V.. in .

-...- '
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4.2 Piecewise-Linear Approach

One of the most basic problems in nonlinear dynamic net-

work analysis is to solve the nonlinear differential equations.

Most of this tedious process can Ie eliminated by the PWL ap- .-

proach. One way of analyzing a first-order dynamic network

is to obtain the equation of motion in the normal form in

terms of the state variable Vc of the capacitor and solve it.

Because of the PWL characterization of the network model,

it is possible to construct at any time t = t0 a network which

consists only of linear resistors and capacitors since at any

given time a PWL network must operate on some linear segment

k. The response will continue to stay in the same segment

k until it reaches one of the breakpoints of this segment at

some time t = t. During the time interval (t, t l) the non-

linear resistance appears linear to the energy-storage ele-

ment (capacitor). Therefore, it can be replaced by its

Thevenin or Norton equivalent circuit. The resulting network

conceptually is the simplest Is t order dynamic network which

has the general form of Fig. 4.3. The corresponding normal-

form equation is given by

CdV +V.
C +y Is (4-1)

dt R s

Solving the differential equation gives the following familiar

expression,

- -(t-to)/k
V(t) = V (t )+[Vk(to)-Vk(te)]e tit (4-2a)

k

- . . .. .. . % . < : .. ._.. < . -. .- 1.. .
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where V (to ) is the initial state at segment kk o

Vk (te ) is the equilibrium state at segment k
°e

Tk is the time constant at segment k

In the case where the PWL segment k in the i-v charac, .

istics is horizontal or R - -, solving Eq. (4-1) gives the

following linear expression:

I
V(t) = Vk(t ) + C (t-t ) (4-2b)

If the above interpretation for V(t) is applied to all

times t > to, the resulting curve will define the trajectory.

The trajectory always starts from the initial state correspond-

ing to t=t o. Since the motion of the network is completely

described by its trajectory starting from the prescribed

initial state, the pertinent segment k containing the initial

state will be used to determine the equilibrium state and the

time constant corresponding to segment k. An examination of

Eq. (4-2) shows that it is completely specified by the three

parameters, namely, the Vk(to), Vk(te), and Tk" Given these

three parameters, the solution V(t) can be obtained by inspec-

tion without having to solve the associated differential

equation. This observation is the key to the table lookup

method that we are going to apply.

It is noted that Eq. (4-2a) is valid only for all time

t > t for which the value V(t) falls within the interval of

definition of segment k and V(t) eventually will settle down

asymptotically to the equilibrium state for all time t > to.

.... ..- , ._ '. ' ' - - ,..... .... ... .. ... .. ....':-- .. . ..:-..-.-,.. . -...---. ,. ...
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If the value of Vk(te) is within the interval of definition

of segment k for all times t > to , then the complete solution

consists of the single exponential time function. If the

value of Vk(t e) exceeds the interval of definition of segment

k, then the time t = tI where v(t) reaches the breakpoint of

segment k must be determined. The exponential solution is

then valid only for t< t < t From Eq. (4-2a), the time

t can be found easily from the following equation

= nVk(tl) - Vk(te)

k Vk(to) - Vk(t) o--

At t = t1, V(t1 ) is chosen as the new initial state. The

* parameters will be evaluated at this breakpoint within the

new segment and the process is repeated as many times as neces-

sary until the solution V(t) reaches the final specified time

tf. Remark: The DC solution at t = 0 is used as the first

initial state.

4.2.1 Inverter circuit

The network model of the inverter is shown in Fig. 4.4.

Taking KCL at the output terminal gives

dV
C - 2 + I + idl + gdl*vgdl - ILl - idd

- Vgdd*gdd = 0 (4-4)

where IDl = Vgsd*gsd + isd

ILl = Vgsl*gsl + isl
r ° Ll
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Vgsd = V.
in

r Vgdd =V. - V
• . in o

Vgsl = 0

Vgdl = V - V

0 plus

Rearrangement of Eq. (4-4) gives the Norton equivalent form

of Eq. (4-1) with the following values for the elements

1 (4-5)
gdd+gdl

is= K1 + K2 *Vin (4-6)

where K1 = (idd-isd) + (isl-idl) + Vplus*gdl

2 gdd - gsd

In the turn-off case, the zero value of the input causes

all the model parameters of the driver to be small which could! -
then be neglected in Eq. (4-4). In this case, Eq. (4-4) is

governed by the i-v characteristics of the depletion load.

Various sets of tangent points for the approximation of the

i-v curve on the load have been used to observe the output

risetime. Numerical results using the PL approach are com-

pared with those of SPICE2. Although all the results are

close to those of SPICE2, the possible accumulative error on

the delay time when a series of inverters are connected is

investigated. The set of (-2 V, -1.5 17, -0.5 V) was found

to cause the smallest error in the delay time and thus will

be used throughout the remainder of this thesis. A similar

-. .- . . .- . . . . . . ., . . . . . . - . . .
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procedure is applied to the turn-on case to find a better set

of tangent points for the i-v curve of the enhancement driver.

Unlike the turn-off case, the depletion load does carry some

impact on the zero-state response of the output. Since the

W/L ratio of the driver is very much larger than the corres-

ponding ratio for the load, the discharging current through

the driver will be much larger than the charging current

through the load. Hence, the output is more dependent on the

discharging current. Initially, when Vout is high, the driver

is in the saturation region which carries a large discharging

current. However, the variation on the threshold voltage

due to the PWL approximation effectively lengthens the satu-

ration region of the driver. As a consequence, the driver

stays longer in saturation and produces more discharging

current at the beginning time. As a result of the larger

discharging current, the fall time by this model is shorter

than the SPICE2 output. However, the responses should be

adequate for most practical circuit design. The results with

the chosen sets of tangent points for both cases are shown

r'. in Fig. 4.5.

4.2.2 NAND Circuit

The device symbol for a 2-input NAND is shown in Fig. 4.2

and the PWL model of the device is shown in Fig. 4.6. Tak-

ing KCL at the output terminal gives d'
~dV~
ILl +iddl+Vgddl*gddl = I l+Vgdl*gdl+idl+Cd (4-7)

where ILl= Vgsl*gsl + isl

. .** **~. -
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A = PEL model with step input

B = SPICE2 output

Fig. 4.5a. Turn-off case for the inverter.
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1. Vgsdl*gsd I + isd I

Vgddl = Va-V

Vgdl = V -V
0 plus

Vgsd 1  V a-V f

Vgsl = 0

Taking KCL at the floating mode Vf gives

ID2 + ID3 = Vgsdl*gsdl+isdl+Vgdd2 *gdd2 +idd 2  (4-8)

where ID2 = Vgddl*gdd I + idd I

I D3 = Vgsd 2 *gsd 2 + isd 2

Vgsd I = Va - Vf

Vgdd2 = Vb-V f

Vgdd= Va-VO
1 a 0

Vgsd2 = 0

. DC analysis by Katzenelson's algorithm is performed by taking

Vf as an unknown variable and setting dV /dt to zero. Equation
f 0

(4-7) and Eq. (4-8) are put in the following forms to find

r the DC operating point.

921 92 LVfJ 1 (4-9) ..

where gll = gddl + gdl

IJ
g12 - -gsdl

g2 1 = -gddl

. . a . . . . .
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g22 = gsd l + gdd 2

= isl-idl+idd -isd +V a(gddl-gSdl)+Vplus*gdl

1i2 =iSdliddl+idd 2isd2 +Va(gSdlgddl)+Vb (gdd2_gsd2)

Due to the nature of the logic function of the NAND gate, an

initial guess of 5 V is set to the output and the floating

node for faster convergence. DC analysis with 4 possible

combinations of inputs is illustrated in Table 4.1.

Table 4.1 -*

DC Logic Function of 2-input NAND

Va Vb  Vo  Vf

0.25 V 5.0 V 5.0 V 0.0 V

0.25 V 0.25 V 5.0 V 2.5 V

5.0 V 5.0 V 0.29 V 0.15 V

5.0 V 0.25 V 5.0 V 3.5 V

For the transient analysis, the relationship between V

and Vf is derived from Eq. (4-8) and expressed as follows:

(Vo - Vx )*gdd 1  (4-10)
Vf gdd2 +gsd I

2 1



45

* where

V x gdd1

*Substituting Eq. (4-9) into Eq. (4-7) gives the Norton equiv-Z.

alent form of Eq. (4-1) with the following values for the

* elements:

R = sgd(4-11)

gdl+gdd1 - I.,+sd

is Kl+K *Va+K *Vb (4-12)

where

1K= (idd1 isdi)+(isl-idl)+Vp1  gdl+ gd

[(isd1-idd1 )+( idd2-isd2)

K2 = gsd +gdd2

gsd * (gdd2-gsd)
K3 = gsd +gdd2

F Results with all the 16 possible step inputs as shown in

Table 4.2 are observed. After the adjustment of the W/L ratio

on the load, the responses of the NAND gate are almost identical

to that of the inverter. The casesfor rising and falling

responsesare shown in Figs.4.7 (a) and (b), respectively.
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Table 4.2

Possible Inputs for Transient Analysis

Va Vb V0

+ + 0 a

o 0 1 0 a

o 0 1 1 a

0 1 0 0 a

o 1 0 1

o 1 1 0 a

o 1 1

1 0 0 0 a

1 0 0 1 a

1 0 1 0 d

1 0 11d

110 0 a

110 1 C

111 0 d

o = 0.25 V a - output stayshigh

1 = 5.0 V b - output stayslow

c - output goes from high
to low

d -output goes from low
to high
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A =PWL model with step inputs

B =SPICE2 output

Fig. 4.7a. Turn-off case for the 2-input NAI-D gate.
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Chapter 5

WAVEFOR1 APPROXIMATION

5.1 Introduction

In general, the signals in a circuit are not step func-

tions, and the techniques discussed in the previous section

are not directly applicable. Solving the differential equa-

tion of Eq. (4-1) with exponential input, for example, gives

a nonlinear transcendental equation of the general form,

Ae-al t + Be-2 = C (5-1)

Solving this equation for the variable t is a time-consuming

task and often needs a number of iterations to find the point

where the trajectory crosses a breakpoint. To simplify the

task, two methods of approximating waveforms have been in-

vestigated: the first uses a discrete stepwise function ap-

proximation, and the second uses a PWL approximation. As

-. shown in Chapter 4, the PWL approach with step input gives a

simple output expression which can be determined by 3 pieces

of information. The discrete stepwise function defines con-

stant level of voltage at prescribed intervals. During each

interval, the input can be treated as a step function which

. allows the analysis by the method described in Chapter 4. To

test this approach,a step input is applied at the first stage

of a chain of 10 inverters, and output of each stage is ob-

served. The output waveform of each stage is approximated by

• . -. . . - ..- . . -. • - . . . . - . - . -- .- . - . . . - - -. :
-~~~~~~. .-....... (.... .. ..... ..........-.....-...... ,.:.-.-.......-...-... . ..... -. / * -..-. *,." :,
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a stepwise function and fed into the next stage as an input.

In many cases, when there is feedback in a circuit sys-

tem the system will not be unidirectional and the subcircuits

within the feedback loop can no longer be analyzed as a se-

quence of stages without iteration. It will be computation-

ally inefficient to consider the entire circuit as a big sub-

circuit. Hence, the Gauss-Seidel WR method will be employed

to decompose the circuits into several dynamical subcircuits

each of which is analyzed independently for the entire time

interval [71. A number of iterations are needed for the

waveform to converge to the solution, provided it converges.

A 3-inverter ring oscillator will be used to illustrate the

application of WR technique to circuits with feedback.

Another fact which may cause computational problems in

M!OS digital circuit design is the presence of pass transis-

tors. The pass transistor has a coupling effect when the

device is turned on and both its drain and source are charg-

ing or discharging at the same time. A subcircuit which in-

cludes pass transistors results in 2 or more dimensional

differential equations. The WR method will be used again

to decompose the pass transistor into individual subcircuits.

A simple network with pass transistor will be used as an

example.

Although the WR method is found to be efficient, it does

suffer from a convergence problem when strong feedback exists.

Such a problem is demonstrated by the bootstrap circuit.



5.2 Discrete Stepwise Representation

An exponential function of Vin in Eq. (4-1) gives rise

to nonlinear transcendental equations. To avoid solving

these equations, a stepwise function is proposed to repre-

sent the exponential waveform. A stepwise function can be

represented as

V. V. for t(52in j ea-t _tb (5-2)
Let V. be the step level while and t be the step sizes.

j ~~a d b b h tpszs

During the interval (td,tb), V. is constant. Thus, the in-d b in

put can be treated as a step function and solved by the

method described in Chapter 4.

A set of sampling points is chosen to set up the step

representation. One way to choose the sampling points is to

take the percentage of the difference between the maximum

and minimum values of the waveform as specifications for the

sampling points. The 10-stage inverter chain shown in Fig. "-

5.1 will be used as an example for the stepwise representation.

In the turn-off case where the input waveform is changing

from high to low, the output is charging up from low to high

mainly by the current through the load transistor. A low

level of input can be reached abruptly because the input

typically is decaying very fast. For the short full time of

the input, we found that a 2-step representation as shown in

Fig. 5.2a gives good accuracy. .

In the turn-on case where the input waveform is from low

to high, the output is discharging from high to low mainly by

the current through the driver transistor. Because of the

a; ~ * - -..-.. .



Fig. 3.1. Ten-stage ';nverter- chain-
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A =Discrete step function

B =Actual waveform

Fig. 5.2a. Two-step representation of waveform
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* short time response at the output due to large discharge

current and the direct impacts on the discharge current by

the input, we found that a 3-step representation as shown

in Fig. 5.2b is necessary to give acceptable accuracy. Since

the effective threshold voltage of the driver is 1.5 V, it

was found the first sampling point for step size should be

chosen at 1.8 V to produce the turn-on effect. The other

sampling points will be determined by the percentage of the

difference between the maximum value and the 1.8 V. If the

maximum value of the input is less than or equal to 1.8 V,

then the entire waveform will be represented with a step

function of 1.8 V. Results with various percent points are

observed. Results of the inverter chain with a step input

and with the above representation are shown in Figs. 5.3a,

5.3b, 5.3c and 5.3d.

Although the step representation allows solving simple

equations, a considerable amount of time is needed to set up

the stepwise function. An exponential waveform is composed

of segments that are defined as Eq. (4-2) at a prescribed

time interval. After a sampling point for step size is de-

termined, it is necessary to locate the corresponding segment

of the waveform that contains the sampling point. After the

segment is identified, Eq. (4-3) will be solved to find the

step size point. The setup of the step level is trivial and

straightforward. The other drawback of the step representa-

tion is the accumulated error on the delay time on the in-

verter chain. One advantage, however, is high-speed computa-

tion.

. .***
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5.3 Network with Feedback

When a circuit contains feedback, the subcircuits within

the feedback loop can no longer be analyzed as a sequence of

stages without iteration. The Gauss - Seidel Waveform Relaxa-

tion (WR) method [7] is chosen to decompose the circuit into

several subcircuits each of which is analyzed independently

as an individual stage for the entire time interval. A 3-

inverter ring oscillator shown in Fig. 5.4 is used as an

illustrative example.

In the oscillator circuit, instead of solving the ordinary

differential equation of the form

X= f(Xt) (5-3)

as in inverter chain, a first-order 2-dimensional differential

equation with Xf as the feedback term in the form

- = f(xmxfot) (5-4)

will be considered. The basic idea of the WR method is to

fix all the unknown variables and solve for one variable at

a time as a 1-dimensional differential equation. The solution

obtained for that variable can then be substituted into an- *.

other equation to solve another variable. The procedure is

repeated until convergence to a solution is reached.

The step representation proposed in the last section is

not practical for application in the WR method. First, in

the case where the circuit is oscillatory, a lot of time is

needed to set up the steps for each rising and falling edge.

Second, the step representation also seems to provide



-I-

Fig. 5.4. Three inverter r-ing oscill.ator
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insufficient accuracy for nonunidirectional circuits. A

step representation with fixed small step size is proposed.

This approach eliminates the computation of step size which

can be quite time-consuming and the discrete levels of step

size still allow the application of Eq. (4-2). The small

step size also provides a higher degree of accuracy.

A fixed step size of 1 nsec is used. One approach to set

up the step level is to take the average of the voltage

levels at both ends of a step size. To simr.lify the analysis

further, the procedure to detect the time point where the

trajectory crosses a breakpoint is eliminated. Only the

initial state, the equilibrium state, and time constant of Eq.

(4-2) are evaluated at the endpoints. Because of the small

step size, the error due to this simplification is not sig-

nificant. A solution similar to Eq. (4-2) will be reproduced

in terms of the stepwise input. In general, the first-order

differential equation of Eq. (4-1) can be expressed as

x = ax + bu + c (5-5)

where x is the output and u is the input.

Solution of the above equation is obtained by solving
• ~)=Xt~a(t-to) + at -a

X(t) = x(t)e 0 + e J e (bu(t)+c)dt (5-6)
t
0

Let the input u be expressed as the average voltage between

the endpoints of a step size as shown in Fig. 5.5.

u(t ) + u(t)
u= (5-7)

2

* . .
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Then

h[bu a (t-to) bu (5-8)x (t) = x tO - --e- -

Results of the ring oscillator with the above stepwise func-

tion are shown in Fig. 5.6. Note that the convergence of

the iterated solution on the oscillator is achieved with the

number of iterations being proportional to the number of

oscillating cycles for a given time interval.

The above step representation offers good results but

the small step size requires a lot of table lookups. It is

possible to eliminate some of the table lookups by replacing

some cf the small step sizes with a larger step size. An-

other approach which allows the application of variable step

size is to represent the waveform by segments of ramp as

shown in Fig. 5.7.

Solution of Eq. (5-6) with the ramp function involves

t-7solving the trapezoidal area under the curve and it is given

by bu(t )+c a(t-t O )2

x(t) = Ix(t o ) + u (t-t o ) iea0 2 0

+bu (t) +C .
+ 2 (t-t0 ) (5-9)

for t0  t 4 t+h

where a = RC .

h = tl-t °  is the step size.

At the endpoint t = t of a step

" ...-.-..-.-.. -'- . .....- .-.....-. .- .. - .- .'-,..- ..-.. -. .-. '.'-.-.'.-. --. - -"-"' "" I.
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x(t (t + bu(t)+c ah bU(t)+C h (5-10)
1 2 2

If the difference between u(to) and u(tI) is small, the step

size h can be increased without degrading the accuracy. On

the other hand, the step size can be decreased to improve

accuracy. Results from the ramp representation with fixed

step size shown in Fig. 5.8 are almost identical to those in

Fig. 5.6.

The technique applied to check for convergence compares

the values of the iterated solutions at the end of the given

time interval. The results indicate this method of checking

for convergence is quite efficient and reliable.

5.4 Network with Pass Transistor

The circuit shown in Fig. 5.9 is a basic part of the com-

*" mon dynamic shift register. The PWL model of the circuit is

shown in Fig. 5.10. This circuit has a coupling effect when

the clock control VCLK of the pass transistor is on and both

C1 and C2 are charging and discharging at the same time.

The circuit can be described by a first-order 2-dimensional

differential equation of the following form:

V - + MV + M3*V + M4*V + M (5-11a)
C1  1C 1  2 C2  3 CLK 4 in 9

V M5V + M6V + M7*V + M (5-11b)C2  5 C 6 C M7*CLK 8

The Gauss-Seidel WR method will be used again to solve these

* equations as two l-dimensirnal differential equations.

. . . . . . . . . *-
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Fig. 5.9. Test circuit.
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Taking KCL at the output terminal of the inverter gives

the following expression.

dVi

i gdl*idl + idi -I - Vgdd*gdd

dt

-idd -Vgdt*gdt -idt =0 (5-12)

whea I Dl -Vgsd*gsd + isd

I Vgsl*gsl + isi

I - Vgst*gst + ist

Vgdd VC, - V u

Vgd Vin VCi

Vgdt V -V
CLK Ci

Vgsd =V. in

Vgst VL -V....
C2

Vgsi 0

*Rearrangement of Eq. (5-12) gives the Norton equivalent form

of Eq. (4-2) with the following values for the elements:

R-______ (5-13)

gdl+gdd+gdt

IV =K +*V *
is K +K 3 C2 + K4  L (5-14)

1 2 i 3 C2 4 CL
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where K1 = (isl-idl) + (idd-isd) + (idt-ist) + V plus*gdl

K2 = gdd - gsd

K3 = gst

K4 = gdt - gst

Substituting Eq. (5-13) and Eq. (5-14) into Eq. (5-12) gives

an equivalent form of Eq. (5-11a) which is also used as the

basic circuit equation for the WR method. Taking another KCL

equation at VC2 gives

dVc
C2 C2  + Vgst*gst + ist - IT2 =0 (5-15)

dt

where IT2 = Vgdt*gdt + idt

Vgst= VCLK - VC2

,'S

Vgdt V VCLK - V Cl

Rearrangement of Eq. (5-15) gives the Norton equivalent form

of Eq. (4-2) with the following values for the elements:

R (5-16)

gst

I =K + K6*V + K7*V
s 5 6 Cl 7(5-17)

where K = ist - idt

K = gdt

K = gst -gdt
7

Substituting Eq. (5-16) and Eq. (5-17) into Eq. (5-15) gives

an equivalent form of Eq. (5-11b) which is the basic circuit

equation for the WR method.

. ' 'I ,la" "--,'." ""J" eolm'°'r" lm....n.......".....IIi"ll"hla ,, hn " " % "'"" ° •
.. .' ." " """" ""' r i;-""'" :i - ' "" "
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The delay through such a circuit is different from the

inverter delay which is more dependent on the input level.

In the case where both capacitors are charging up, the re-

suits by the WR method show a slower time response than those

of SPICE2. The major reason is the larger effective thresh-

old voltage of the pass transistor gives lower steady-state

values for VC2. Since VCl is coupled to VC2, both V and

VC2 have siqnificantly longer rise times than the SPICE2 output.

The results are shown in Fig. 5.11.

5.5 Convergence Problem of Waveform Relaxation Method

The bootstrap circuit in Fig. 5.12 has a floating capaci-

tor Cb as the feedback element. The WR method and stepwise

function are applied to analyze this circuit. If the value

* of Cb is relatively large, then the solution does not con-

verge. A much smaller step size is necessary to analyze this

problem. The simulated results with Cb - 0.005 pF and the

other output capacitors at 0.1 pF are shown in Figs. 5.13a,b,

c, where it can be seen that the result by this approach is

not accurate in comparison with SPICE2.

... ~.. . . . . . . ..i --
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Chapter 6

CONCLUSION

A PWL model of MOS transistor circuits has been con-

structed. The aim of this model is to provide acceptable

accuracy without solving complex nonlinear equations. A

configuration of interconnection of 2-terminal nonlinear

elements for the MOS is used. This form not only satisfies

the requirement of the PWL canonic form but also allows the

application of 1-dimensional table lookups. In addition,

more memory saving is achieved because the completely bi-

directional property of the model requires only one table to

represent both nonlinear elements.

Two approaches to function generation by PWL segments

have been studied. Both approaches are convenient and easy

to implement. For accuracy measurements of the approxima-

tion, the Katzenelson algorithm is used to study the DC

characteristics of the depletion-load inverter. The first

approach uses chord approximation. The advantage of this

- approach is the exact representation of the i-v curve at the

threshold voltage and the straightforward setup of the chords.

However, it suffers from accuracy problems if the DC operat-

ing point is placed near the maximum error point. The DC

output also exhibits high dependence on the endpoint of the

h chords. The second approach is the tangent approximation.

It is slightly more complicated to set up; however, the error

has been reduced significantly. Even with the DC operating

' -'.
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point at the maximum error point, the results still provide

good accuracy. The major drawback to this approach is the

variation of the threshold voltage sometimes imposes a prob-

lem on timing analysis.

For the understanding of the model's transient behavior,

step inputs were applied to the inverter and 2-input NAND

gate for observation. The values of the step function are

selected such that the impacts of the load and driver on the

output can be separated. Thus, each transistor's model para-

meters can be examined to determine the best PWL segment ap-

proximation. Although the changes of threshold voltages due

to tangent approximation contribute to errors in the tran-

sient analysis, the results are considered acceptable. The

solutions of the PVL model in the 2-input NAND gate circuit

with various inputs display accuracy that is as good as the

solution in the inverter.

The PWL approach allows a PWL model network to be trans-

formed into a first-order dynamic network in a given segment.

The solution of this simple equivalent circuit with constant

input leads to an exponential waveform or linear waveform,

whose exact form can be found by determining only three pieces

of information, namely, the initial state, the equilibrium

state, and the time constant associated with the segment.

This information is easily obtained by employing the table

lookup method.

For realistic circuit analysis, the exponential waveform

is considered. A discrete stepwise function is proposed to
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represent the exponential waveform. First, this representa-

tion avoids solving the nonlinear equations. Second, it

adopts the simple solution for constant input which can be

solved easily with table lookup. A 10-stage inverter chain

is used to illustrate the effectiveness of the stepwise re-

presentation. The outputs at various stages are observed to

give a good approximation quickly. Although the discrete

representation enjoys solving simple equations, a consider-

able amount of time is needed to set up the stepwise function.

V The errors associated with delay time are considered large.

The effect of feedback in a circuit is studied with the

, application of the WR method. Two representations of wave-

. forms are proposed to be incorporated into the WR method. The

first waveform representation method is a stepwise function

with small fixed step size. The analysis of this representa-

tion is treated as constant input at prescribed intervals.

The small fixed step size eliminates the computation of step

size and gives very good accuracy. However, the small step

size requires a lot of table lookup. The second representa-

tion method is a ramp function which allows the application

of variable step size. It can result in less table lookup

or more accuracy as described. The analysis of this function

* is not more difficult than for the step case because both

solutions are expressed in the same form and can be solved

easily with table lookup.

The WR method with small step size stepwise representa-

" tion was also applied to solve the network with a pass

C-7.-I.i.-i , i'.-:,:'-,'---2" .'> -:".- .... ........-......... '. -.. ,...-. '-...-.-.-........-...... ." ° .- •'* .- .. ,-,"."--.-'2,".- .'',-..-
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transistor. The result exhibits significantly slower re-

sponse on the turn-off case. The major reason is the larger

effective threshold voltage of the pass transistor gives

lower steady-state value. The study of the bootstrap circuit

indicates the WR method will not be convergent when a strong

feedback element exists.

The simulation data of the following cases which were

analyzed in the previous sections with the waveform relaxa-

tion and small fixed step size stepwise representation are

compared with those obtained from SPICE2.

Case 6.1: The 3-inverter ring oscillator in Fig. 5.4.

Case 6.2: The pass transistor network in Fig. 5.9.

Case 6.3: The bootstrap circuit in Fig. 5.12. -

The other example used the variable level discrete steps for

waveform representation.

Case 6.4: The ten-stage inverter chain in Fig. 5.1. -

These simulation data shown in Table 6.1 indicate the

PWL approach provides some savings in CPU time. However, some

examples also illustrate accuracy or convergence problems. A

modified version of the WR method or a total new approach

should be investigated to overcome the problems. A different

set of PWL segments may be necessary to represent a pass

transistor. The waveform representation by ramp functions

should be developed in more detail to implement variable step

size.
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L Table 6. 1

SIMULATION DATA BY PWL APPROACH AND SPICE2

Saving in CPU
Case PWL Approach SPICE2 Times

6.1 2.52 sec 16.1 sec 84.3%

*6.2 2. 78 sec 6.50 sec 57.2%

*6.3 2.05 sec 12.2 sec 83.2%

6.4 2.22 sec 42.7 sec 94.8%

ro..
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